8 research outputs found

    An Innovative Skin Detection Approach Using Color Based Image Retrieval Technique

    Full text link
    From The late 90th, "Skin Detection" becomes one of the major problems in image processing. If "Skin Detection" will be done in high accuracy, it can be used in many cases as face recognition, Human Tracking and etc. Until now so many methods were presented for solving this problem. In most of these methods, color space was used to extract feature vector for classifying pixels, but the most of them have not good accuracy in detecting types of skin. The proposed approach in this paper is based on "Color based image retrieval" (CBIR) technique. In this method, first by means of CBIR method and image tiling and considering the relation between pixel and its neighbors, a feature vector would be defined and then with using a training step, detecting the skin in the test stage. The result shows that the presenting approach, in addition to its high accuracy in detecting type of skin, has no sensitivity to illumination intensity and moving face orientation.Comment: 9 Pages, 4 Figure

    Multi-Resolution and Noise-Resistant Surface Defect Detection Approach Using New Version of Local Binary Patterns

    No full text
    Visual quality inspection systems play an important role in many industrial applications. In this respect, surface defect detection is one of the problems that have received much attention by image processing scientists. Until now, different methods have been proposed based on texture analysis. An operation that provides discriminate features for texture analysis is local binary patterns (LBP). LBP was first introduced for gray-level images that makes it useless for colorful samples. Sensitivity to noise is another limitation of LBP. In this article, a new noise-resistant and multi-resolution version of LBP is used that extracts color and texture features jointly. Then, a robust algorithm is proposed for detecting abnormalities in surfaces. It includes two steps. First, new version of LBP is applied on full defect-less surface images, and the basic feature vector is calculated. Then, by image windowing and computing the non-similarity amount between windows and basic vector, a threshold is computed. In test phase, defect parts are detected on test samples using the tuned threshold. High detection rate, low computational complexity, low noise sensitivity, and rotation invariant are some advantages of our proposed approach
    corecore